English logo
Boğaziçi University Library
Digital Archive
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
English logo
Boğaziçi University Library
Digital Archive
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Karabulut, Yunus."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Some mean value problems about Dirichlet L-functions and the Riemann zeta-function
    (Thesis (M.S.)-Bogazici University. Institute for Graduate Studies in Science and Engineering, 2009., 2009.) Karabulut, Yunus.; Yıldırım, Cem Y.
    The average values of higher derivatives of the Riemann zeta-function and Dirichlet L-functions over a set of special points, speci cally the set of nontrivial zeta zeros, are important tools to understand the distribution of zeta zeros and the relationships between the Riemann zeta function and Dirichlet L- functions. In this thesis, we study the following sums....
  • Loading...
    Thumbnail Image
    Item
    Vertical distribution problems in Zeta-Function theory
    (Thesis (Ph.D.)-Bogazici University. Institute for Graduate Studies in Science and Engineering, 2015., 2015.) Karabulut, Yunus.; Yıldırım, Cem Y.
    In this thesis, we focus on the vertical distribution problems of the zeros of the Riemann zeta-function and other related functions. In the rst half of our study we modify Montgomery's argument [1] in such a way that we can obtain some analogues of the pair correlation of zeta zeros, which provide some gap and multiplicity results. In the second half of our study we estimate the averages studied in [2] over the zeta maximas on the critical line instead of zeros so that we arrive at a result on the number of distinct zeta zeros.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Send Feedback