English logo
Boğaziçi University Library
Digital Archive
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
English logo
Boğaziçi University Library
Digital Archive
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Olcay, Dilek."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Thermodynamic feasibility of solar-assisted absorption cooling
    (Thesis (M.S.)- Bogazici University. Institute for Graduate Studies in Science and Engineering, 1987., 1987.) Olcay, Dilek.; Aksan, Emre.
    Solar cooling is probably among the most promising ways for solar energy utilization in near future. The purpose of the present study is to investigate the thermodynamic feasibility of operating the solar absorption system for space cooling. The thermodynamic analysis is performed for various ranges of the operation parameters selected to conform to typical climatic conditions of Turkey. At the beginning of the study, both ammonia-water and lithium-bromide-water absorption systems have been considered. The lithium-bromide-water system is preferred since it has become more popular for air conditioning applications. The most important advantage of lithium-bromide-water absorption system is that,it operates satisfactorily at generator temperatures of 85 to 90°C, achievable by a flat plate collector. A theoratical model is developed to investigate the characteristics of a lithium-bromide-water absorption type refrigeration cycle. A computer program is developed to find the design conditions of this system. Another computer program is developed to calculate the amount of useful heat energy that can be obtained from flat plate solar collectors. Combined system consists of a flat plate solar collector, generator, condensor, evaporator, absorber and economizer. The results indicate that the lithium-bromide-water absorption system combined with flat plate solar collectors may provide energy savings in considerable amounts.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Send Feedback