English logo
Boğaziçi University Library
Digital Archive
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
English logo
Boğaziçi University Library
Digital Archive
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Uluhan, Eray."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    WEB mining issues: topic finding and focused crawling evaluation
    (Thesis (M.A.)-Bogazici University. Institute for Graduate Studies in Social Sciences, 2006., 2006.) Uluhan, Eray.; Badur, Bertan Yılmaz.
    Web mining is defined as the process of using data mining techniques to automatically discover and extract information from semi-or unstructured Web documents and services. This study on Web mining consists of two sections, covering Web structure mining and Web content mining. In the first section, mostwidely accepted focused crawling algorithms and simple tree traversing algorithms are compared based on their page relevance, keyword predicate satisfaction and hitratio criteria. Using the URL tokens as an input resulted in higher performances for all criteria. In the second part, an automatic topic finding methodology through Web pages is proposed. Processing only list items on HTML pages returned from a search engine, it is expected to find related key concepts on a user-defined topic. The methodology is experimented using different parameters, such as number of pages, different keywords, stemming implementations, etc. The candidate concepts ordered in relevancy scores represent a high precision on user-defined topic.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Send Feedback