Class number one problem

Loading...
Thumbnail Image

Date

2019.

Journal Title

Journal ISSN

Volume Title

Publisher

Thesis (M.S.) - Bogazici University. Institute for Graduate Studies in Science and Engineering, 2019.

Abstract

In 1801, Gauss conjectured that there are exactly nine imaginary quadratic number fields with class number one, namely: Q(√−1), Q(√−2), Q(√−3), Q(√−7), Q(√−11), Q(√−19), Q(√−43), Q(√−67) and Q(√−163). This conjecture is wellknown as class number one problem. In 1952, K. Heegner first solved the problem and he showed that Gauss was right about the assumption in Diophantische analysis und modulfunktionen. In this thesis, we will present a modern approach to the proof of Heegner as in D.A.Cox’s book, Primes of the Form x2 + ny2.

Description

Keywords

Citation

Collections