Class number one problem

dc.contributorGraduate Program in Mathematics.
dc.contributor.advisorÖzman, Ekin.
dc.contributor.authorKır, Harun.
dc.date.accessioned2023-03-16T11:21:47Z
dc.date.available2023-03-16T11:21:47Z
dc.date.issued2019.
dc.description.abstractIn 1801, Gauss conjectured that there are exactly nine imaginary quadratic number fields with class number one, namely: Q(√−1), Q(√−2), Q(√−3), Q(√−7), Q(√−11), Q(√−19), Q(√−43), Q(√−67) and Q(√−163). This conjecture is wellknown as class number one problem. In 1952, K. Heegner first solved the problem and he showed that Gauss was right about the assumption in Diophantische analysis und modulfunktionen. In this thesis, we will present a modern approach to the proof of Heegner as in D.A.Cox’s book, Primes of the Form x2 + ny2.
dc.format.extent30 cm.
dc.format.pagesxii, 100 leaves ;
dc.identifier.otherMATH 2019 K57
dc.identifier.urihttps://digitalarchive.library.bogazici.edu.tr/handle/123456789/15313
dc.publisherThesis (M.S.) - Bogazici University. Institute for Graduate Studies in Science and Engineering, 2019.
dc.subject.lcshNumber theory.
dc.titleClass number one problem

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
b2034481.034015.001.PDF
Size:
499.62 KB
Format:
Adobe Portable Document Format

Collections